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Yield curve modelling
Principles

• Absence of arbitrage.

• Robust calibration: the model is selected simultaneously from time
series and prevailing market yields.

• Consistent recalibration: tomorrow’s market yield curve does not imply
a rejection of today’s model.

• Analytic tractability: yield curve increments can be simulated
accurately and efficiently.
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Yield curve modelling
Difficulties with standard approaches

• Factor models: do not allow for robust calibration and consistent
recalibration.

• HJM models: lack of analytic tractability.

• PCA models: absence of arbitrage and analytic tractability are issues.

• Filtered historical simulation: ditto.
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Yield curve modelling
Our approach

• Use well-understood affine factor models as “tangent” models.

• The infinitesimal increments of our model belong to affine models with
different coefficients.

• This allows us to fit the market dynamics better than in the case of
affine models with fixed coefficients.

• The resulting models are called consistent recalibration (CRC) models.
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CRC models
Construction 1/2

• For each parameter vector y , consider a Hull-White extended affine
factor model for the short rate.

• Each factor model admits a finite dimensional realisation in the space
of yield curves.
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CRC models
Construction 2/2

• Concatenate yield curve increments, each belonging to a Hull-White
extended affine factor model with possibly different y .

• CRC models are continuous-time limits of such concatenations.
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CRC models
Setup

• (Ω,F , (Ft)t≥0,P) is a stochastic basis where P is a risk-neutral
probability measure;

• W is (Ft)t≥0-Brownian Motion;

• for each parameter y and θ ∈ C (R+) consider the factor model

dX (t) = (θ(t)− by (X (t))) dt +
√

ay (X (t))dW (t), t ≥ 0,

where ay and by are admissible affine functions; and

• each factor model defines a short rate process by r = `(X ), where ` is
a fixed affine map.
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CRC models
Heath-Jarrow-Morton (HJM) equation

• The HJM equation for the factor model with fixed parameter y is

dh(t) =
(
h′(t) + µHJM

y (X (t))
)
dt + σHJM

y (X (t)) dW (t),

dX (t) = (Cyh(t)(0) + by (X (t))) dt +
√

ay (X (t))dW (t),

where Cy is an operator which calibrates θ to the prevailing term
structure.

• CRC models replace y by a Markov process Y . Thus, they are
described by an SPDE for (h,X ,Y ).
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CRC models
Analytic tractability
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• By semigroup methods, one obtains convergence of the simulation

scheme to solutions of the HJM equation.

• Increments of the HJM equation can be sampled accurately and
efficiently.
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CRC models
Robust calibration

• Quadratic covariations of forward rates satisfy

d [h(·, τi ), h(·, τj)] = σHJM
Y (X )(τi )σ

HJM
Y (X )(τj)dt, τi ,j ≥ 0.

• Estimate some of the components of Y fitting CRC covariation
matrices to the dynamics of market yields.

• Calibrate the remaining components of Y to the prevailing market
yield curve by regression methods.

• Select and fit a model for the estimated time series of Y .
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CRC Models
Consistent recalibration property

• The process h does not leave a pre-specified set I of possible curves.

• The set I includes a large portion of possible market observables.

• The process h reaches any neighbourhood of any curve in I with
positive probability.
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CRC Models
Example satisfying the consistent recalibration property

• Let I be the space of all possible forward rate curves. For each
parameter y ∈ R consider the one-factor Vasiček model

dh(t) =
(
h′(t) + µHJM

y

)
dt + σHJM

y dW (t),

where

µHJM
y (τ) = − a

β(y)
eβ(y)τ

(
1− eβ(y)τ

)
,

σHJM
y (τ) =

√
aeβ(y)τ ,

for a > 0 fixed and mapping y 7→ β(y).

• Parameter process: Y = σW̃ for σ > 0 and W̃ independent of W .

• Choose β ∈ C∞b such that supy β(y) < 0 and β′(y) 6= 0 for all y .
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Numerical example
Zero-coupon yields estimated from Euro area government bonds by the ECB
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Numerical Example
Calibration in the Vasiček and CIR cases: aY estimated from the market dynamics
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David Stefanovits (ETH Zürich) CRC Models Imperial-ETH Workshop 2015 14 / 17



Numerical Example
Calibration in the Vasiček and CIR cases: bY estimated from the market dynamics
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• aY and bY vary significantly over time.

• Models with constant parameters y do not satisfy the requirement of
robust calibration.
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Numerical Example
Calibration in the Vasiček and CIR cases: fitting the prevailing market yield curve
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• Vasiček 1 and CIR 1: bY and aY are estimated from the yield curve
dynamics.

• Vasiček 2 and CIR 2: bY and aY are fitted to the prevailing yield curve.

• θ is calculated so that the initial model yield curve exactly matches the
prevailing market yield curve.
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Numerical Example
Covariation matrices

Rank of covariation matrix
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• V and CIR: Hull-White extended Vasiček and CIR models.

• CRC-V and CRC-CIR: CRC versions of V and CIR.

• The consistent recalibration property of CRC models is reflected in the
higher ranks of the covariation matrices.
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